home *** CD-ROM | disk | FTP | other *** search
- *
- ************************************************************************
- *
- SUBROUTINE DSBMV ( UPLO, N, K, ALPHA, A, LDA, X, INCX,
- $ BETA, Y, INCY )
- * .. Scalar Arguments ..
- DOUBLE PRECISION ALPHA, BETA
- INTEGER INCX, INCY, K, LDA, N
- CHARACTER*1 UPLO
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
- * ..
- *
- * Purpose
- * =======
- *
- * DSBMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n symmetric band matrix, with k super-diagonals.
- *
- * Parameters
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the upper or lower
- * triangular part of the band matrix A is being supplied as
- * follows:
- *
- * UPLO = 'U' or 'u' The upper triangular part of A is
- * being supplied.
- *
- * UPLO = 'L' or 'l' The lower triangular part of A is
- * being supplied.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix A.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * K - INTEGER.
- * On entry, K specifies the number of super-diagonals of the
- * matrix A. K must satisfy 0 .le. K.
- * Unchanged on exit.
- *
- * ALPHA - DOUBLE PRECISION.
- * On entry, ALPHA specifies the scalar alpha.
- * Unchanged on exit.
- *
- * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
- * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
- * by n part of the array A must contain the upper triangular
- * band part of the symmetric matrix, supplied column by
- * column, with the leading diagonal of the matrix in row
- * ( k + 1 ) of the array, the first super-diagonal starting at
- * position 2 in row k, and so on. The top left k by k triangle
- * of the array A is not referenced.
- * The following program segment will transfer the upper
- * triangular part of a symmetric band matrix from conventional
- * full matrix storage to band storage:
- *
- * DO 20, J = 1, N
- * M = K + 1 - J
- * DO 10, I = MAX( 1, J - K ), J
- * A( M + I, J ) = matrix( I, J )
- * 10 CONTINUE
- * 20 CONTINUE
- *
- * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
- * by n part of the array A must contain the lower triangular
- * band part of the symmetric matrix, supplied column by
- * column, with the leading diagonal of the matrix in row 1 of
- * the array, the first sub-diagonal starting at position 1 in
- * row 2, and so on. The bottom right k by k triangle of the
- * array A is not referenced.
- * The following program segment will transfer the lower
- * triangular part of a symmetric band matrix from conventional
- * full matrix storage to band storage:
- *
- * DO 20, J = 1, N
- * M = 1 - J
- * DO 10, I = J, MIN( N, J + K )
- * A( M + I, J ) = matrix( I, J )
- * 10 CONTINUE
- * 20 CONTINUE
- *
- * Unchanged on exit.
- *
- * LDA - INTEGER.
- * On entry, LDA specifies the first dimension of A as declared
- * in the calling (sub) program. LDA must be at least
- * ( k + 1 ).
- * Unchanged on exit.
- *
- * X - DOUBLE PRECISION array of DIMENSION at least
- * ( 1 + ( n - 1 )*abs( INCX ) ).
- * Before entry, the incremented array X must contain the
- * vector x.
- * Unchanged on exit.
- *
- * INCX - INTEGER.
- * On entry, INCX specifies the increment for the elements of
- * X. INCX must not be zero.
- * Unchanged on exit.
- *
- * BETA - DOUBLE PRECISION.
- * On entry, BETA specifies the scalar beta.
- * Unchanged on exit.
- *
- * Y - DOUBLE PRECISION array of DIMENSION at least
- * ( 1 + ( n - 1 )*abs( INCY ) ).
- * Before entry, the incremented array Y must contain the
- * vector y. On exit, Y is overwritten by the updated vector y.
- *
- * INCY - INTEGER.
- * On entry, INCY specifies the increment for the elements of
- * Y. INCY must not be zero.
- * Unchanged on exit.
- *
- *
- * Level 2 Blas routine.
- *
- * -- Written on 22-October-1986.
- * Jack Dongarra, Argonne National Lab.
- * Jeremy Du Croz, Nag Central Office.
- * Sven Hammarling, Nag Central Office.
- * Richard Hanson, Sandia National Labs.
- *
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE , ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * .. Local Scalars ..
- DOUBLE PRECISION TEMP1, TEMP2
- INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( .NOT.LSAME( UPLO, 'U' ).AND.
- $ .NOT.LSAME( UPLO, 'L' ) )THEN
- INFO = 1
- ELSE IF( N.LT.0 )THEN
- INFO = 2
- ELSE IF( K.LT.0 )THEN
- INFO = 3
- ELSE IF( LDA.LT.( K + 1 ) )THEN
- INFO = 6
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 8
- ELSE IF( INCY.EQ.0 )THEN
- INFO = 11
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'DSBMV ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- *
- * Set up the start points in X and Y.
- *
- IF( INCX.GT.0 )THEN
- KX = 1
- ELSE
- KX = 1 - ( N - 1 )*INCX
- END IF
- IF( INCY.GT.0 )THEN
- KY = 1
- ELSE
- KY = 1 - ( N - 1 )*INCY
- END IF
- *
- * Start the operations. In this version the elements of the array A
- * are accessed sequentially with one pass through A.
- *
- * First form y := beta*y.
- *
- IF( BETA.NE.ONE )THEN
- IF( INCY.EQ.1 )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 10, I = 1, N
- Y( I ) = ZERO
- 10 CONTINUE
- ELSE
- DO 20, I = 1, N
- Y( I ) = BETA*Y( I )
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF( BETA.EQ.ZERO )THEN
- DO 30, I = 1, N
- Y( IY ) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40, I = 1, N
- Y( IY ) = BETA*Y( IY )
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF( ALPHA.EQ.ZERO )
- $ RETURN
- IF( LSAME( UPLO, 'U' ) )THEN
- *
- * Form y when upper triangle of A is stored.
- *
- KPLUS1 = K + 1
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 60, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- L = KPLUS1 - J
- DO 50, I = MAX( 1, J - K ), J - 1
- Y( I ) = Y( I ) + TEMP1*A( L + I, J )
- TEMP2 = TEMP2 + A( L + I, J )*X( I )
- 50 CONTINUE
- Y( J ) = Y( J ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- IX = KX
- IY = KY
- L = KPLUS1 - J
- DO 70, I = MAX( 1, J - K ), J - 1
- Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
- TEMP2 = TEMP2 + A( L + I, J )*X( IX )
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y( JY ) = Y( JY ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- IF( J.GT.K )THEN
- KX = KX + INCX
- KY = KY + INCY
- END IF
- 80 CONTINUE
- END IF
- ELSE
- *
- * Form y when lower triangle of A is stored.
- *
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 100, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- Y( J ) = Y( J ) + TEMP1*A( 1, J )
- L = 1 - J
- DO 90, I = J + 1, MIN( N, J + K )
- Y( I ) = Y( I ) + TEMP1*A( L + I, J )
- TEMP2 = TEMP2 + A( L + I, J )*X( I )
- 90 CONTINUE
- Y( J ) = Y( J ) + ALPHA*TEMP2
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- Y( JY ) = Y( JY ) + TEMP1*A( 1, J )
- L = 1 - J
- IX = JX
- IY = JY
- DO 110, I = J + 1, MIN( N, J + K )
- IX = IX + INCX
- IY = IY + INCY
- Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
- TEMP2 = TEMP2 + A( L + I, J )*X( IX )
- 110 CONTINUE
- Y( JY ) = Y( JY ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 120 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of DSBMV .
- *
- END
-